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LOCAL COEFFICIENTS AS ARTIN FACTORS
FOR REAL GROUPS

FREYDOON SHAHIDI

To Guity

Introduction. The purpose of this paper is to prove the equality of certain
local coefficients of arithmetic significance which were attached to representa-
tions of quasi-split real reductive algebraic groups in [27] with their correspond-
ing Artin factors attached by local class field theory [21]. As a consequence, we
establish an identity satisfied by certain normalized intertwining operators. It
seems to be useful in applications of the trace formula [1, 29].

More precisely, let G be the group of real points of a quasi-split reductive
algebraic group over R. Let A be the set of simple roots defined by a fixed
minimal parabolic subgroup Po = M0A0U of G. Fix 6 C A, and let P = P9 be the
corresponding standard parabolic subgroup of G and write P = MAN for its
Langlands decomposition. Fix a nondegenerate character x °f U an<i ^
(a, H{o)) be an irreducible admissible x-generic Banach (in particular x~generic
unitary) representation of M (cf. Section 1). Given v G a£, the complex dual of
the Lie algebra of A, let I(v,o,0) be the continuously (quasi-unitarily, if o is
unitary) induced representation IndP^Ga® ev

9 and let V(v,o,0) be its space
(Section 0). Then F ^ a , ^ = Vfoo^O).

Now, let W be the Weyl group of Ao in G. Choose w G W such that w(0) C A.
Let N~ be the unipotent group opposite to N. Define N$ = U C\ wN~w~\
where w is a representative of w in G. For/ G F(^,a,^)00, define

= f
(cf. (3.1) and (3.2) of Section 3). The convergence and meromorphic continuation
of A (v, a, w)f has been studied by Knapp and Stein in [12,13] (for minimal P see
also Schiffmann [24]).

The representation I(p,o,8) is x-generic- Let K(V,O) be the canonical
Whittaker functional attached to V{v,o,9)^ by relation (2.2) of Section 2. Then
the local coefficient Cx(v,o,0,w) is a complex number defined by

K(v,o)(f) = Cx(v,oJ,w)K(w(r),w(o))(A(p,o,w)(f)),

V/ G Viv.o.O)^ (cf. Section 3 and [27]).
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To explain the significance of Cx(v,o,0,w), let WR be the Weil group of R, and
if LM is the L-group of M, let <p : WR-^LM be the homomorphism attached to o
by Langlands' local class field theory at infinity (cf. [21]). Next, if Ln is the Lie
algebra of the L-group of N, let Ln^ be the subspace generated by those roots a v

in Ln for which w(a) is negative. Finally, let p be the adjoint action of LM on
Ln$. Then p • cp is a complex representation of WR. If p0 is half the sum of the
roots in N, we let a,,..., an be the distinct values of 2p0(a

v ). Now, for each /,
/== 1, . . . , « , let Vj be the subspace of Ln# generated by those a v for which
2p9(a

v ) = a,. Then each F, is JFR-invariant under p • <p. Let r,- = p • <p | F̂  and
denote its contragredient by ri (cf. [19, 20, 27]).

Fix a complex number s and let \pR(x) = exp(27r/x). Extend \pR to a character x
of U as in Section 3. Now, for each /, let L(s,ri) and e(s9ri9\(/R) be the
corresponding Artin L-function and root number, respectively. Finally, let
A(C/R,i//R) = / be as in [18]. The main result of this paper (Theorem 3.1) is the
following:

THEOREM 1. Fix the representative w of w and the measure dn defining
A(v,o,w) as in Section 3. Suppose o is \-generic. Then

L(\-a:S,r:)
sr)

where m and p are the number of rank one groups Ga (a reduced a0-root, Xa G N,
and w(a) negative), whose simply connected coverings are isomorphic to SU(2,1)
and SL(2, C), respectively.

The significance of the theorem comes from the following observation.
Suppose there exists a cusp form TT = ® o ̂  (over a number field) such that
o = 7TV for some archimedean place v. Then Cx( — 2sp9,iTv,0,wg) is the local
factor (at v) which appears in the functional equation satisfied by Il/=i Lia^^n,
r,) (Theorem 4.1 of [27]). Consequently, they are expected to have the form (up to
the factor X(C/R^R)2m+p) given by the right hand side of (1) and the
importance of Theorem 1 is that this is in fact true when v is archimedean.

Since the statement is also true when v is unramified, Theorem 4.1 of [27] now
establishes the functional equation

n n

J7 L(ais,7r,ri) = J7 €(^,77,^)1,(1 - a^irJi), (2)
/ = i / = i

whenever infinity is the only ramification for m\ in particular, (2) holds for every
classical cusp form on SL2 (with respect to SL2(Z); cf. [22] for an example).

Moreover, Theorem 1, together with Theorems 5.1 of [28] and 4.1 of [27] will
provide us with a new proof of the functional equation satisfied by the
Rankin-Selberg L-functions attached to the pairs of cusp forms on GLn and
GLm, as defined by Jacquet, Piatetski-Shapiro, and Shalika (cf. [7, 8]). The
original proof is due to them.
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As a corollary of Theorem 1, in Section 4, we establish (Theorem 4.1) an
identity satisfied by an important normalization of the operator A{v,a,w),
whenever wo = o (cf. [2, 9]). We refer to [1] and [29] for the significance of such
identities. We only remark that as is the case with SU(2,1) (cf. [9, 30]), it is
expected that at every other ramified place, the corresponding local analogue of
\(C/R,\pR)2m+p will appear, so that their global product becomes 1.

To define Cx(v,o,0,w), one needs the analytic continuation of K(V,O) which by
Proposition 2.4 reduces to that of Jacquet integrals, defined by (1.2). These
integrals were first introduced by Jacquet in [6], where he established their
analytic continuation for Chevalley groups. This was later extended to any rank
one real group by Schiffmann [24]. Following Jacquet, in [26], we extended his
result from the ^-finite functions to the smooth ones, but still only for split
groups. About the same time Hashizume [5] extended Jacquet's result to certain
^-finite functions, but on a general reductive group. Recently, Wallach [36] has
proved a general result which extends this result to any quasi-split group. This is
what we choose as our reference for Theorem 1.3 of the present paper, even
though the theorem can be proved along the same lines as in [6, 26]. Now,
Theorem 1.3, together with Proposition 2.4 (see also the remark at the end of
Section 2), provide us with a proof of a result, already stated, but not proved, in
[27] (Proposition 3.2). Finally, we would like to remark that quasi-split groups are
all one needs to consider, when studying generic representations (Corollary 5.8
of [33]).

Proof of Proposition 2.4 is based on certain deep results of Casselman and
Wallach, which are only partially published [34]. Fortunately, in view of a result
of Vogan (part f of Theorem 6.2 of [33]), we can extract what we need from
Wallach's published article [34] (cf. Proposition 2.2 of the present paper).

Theorem 3.1 is proved through a number of lemmas, most of which are based
on the material in Section 7 of Knapp-Zuckerman's [15]. In fact, it can easily be
seen that a may be taken to be in the discrete series. Next, if we imbed
o C IM(vo>yo)> a nonunitary principal series of M, we get Cx(v,o,0,w) = Cx(v0 +
*>,77O,0, w) which can now be computed by Lemma 1.4. The difficult part is to
show that Cx(vQ + v,rjo,0, w) is in fact equal to the right hand side of (1), for
which one needs two basic ingredients. The first is that of understanding all the
possible extensions of a-roots to a0-roots; and the second is that of relating the
parameters v0 and 7?0 to the Harish-Chandra parameter of a. We were fortunate,
since Lemmas 7.4, 7.5 and 7.6 of [15] which are in turn consequences of Knapp's
earlier work [10,11], were aimed exactly at answering the first problem; while the
second one was the subject of study by Knapp and Wallach in [14]. The proof of
Theorem 3.1 then reduces to a number of lemmas (Lemmas 3.2 through 3.12).
We hope that our theorem gives another application of the deep results available
in Section 7 of [15].

Theorem 4.1 is now a consequence of Theorem 3.1 and a result of Delorme [3]
on the ratios of intertwining operators. I am indebted to L. Clozel for informing
me of Delorme's result. I also would like to thank him for useful discussions
during the past year.
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Thanks are also due to J. Arthur, D. Vogan, and N. Wallach for useful
conversations.

0. Notation. Let G be a quasi-split connected reductive algebraic group over
R. Fix a maximal torus T over R, and let B be a fixed Borel subgroup containing
T. Then B = TU, where U is the unipotent radical of B. For every algebraic
group H, we use H to denote H(R). We then have G,B,T,U9 . . . . Let K be a
maximal compact subgroup of G relative to B. Then G = KB.

Let 2 denote the set of roots of T in G. Then U determines an ordering in 2.
Let 2 = 2 + U2~ with 2 + and 2~ the sets of positive and negative roots in 2,
respectively. Denote by A the set of simple roots in 2 + . We say a G 2 is reduced
if J^a£2.

For a subset ScA, let M^ be the reductive subgroup of G generated by 9.
Denote by P^ the corresponding standard parabolic subgroup, i.e., Pg = M^N^
with N# C U. Then U = N0 and B = P 0 . Let Ag be the split component of the
center of Me. Write Pg = Mg°AgN9 for the corresponding Langlands decomposi-
tion of Pg. When 9 is the empty set, we use Mo and Ao to denote M% and A0,
respectively. Then B = MQA0U. Since G is quasi-split, Mo is abelian. It is the
centralizer of Ao in K.

For every 9 C A, let W(Ag) be the Weyl group of Ag in G. When Ag = Ao, we
simply use W to denote W(A0). For every reduced root a G 2 + , let wa G W be
the corresponding reflection and let w, be the longest element in W.

Let Q be the Lie algebra of G, and for 9 C A, let ĉ  be the Lie algebra of Ag.
Denote by (ag)^ the complex dual of ag. We use a£ to denote (a0)£. Let 2^" be
the subset of roots in 2 + whose root vectors lie in Ng. By restriction, 2^" can
then be identified with the set of roots of A9 in Pg. Set pg = ^Saeitf a-

Given an irreducible admissible Banach (in particular unitary) representation
(a, H(o)) of M9° and v G (a,)£, let

I(v,o,9)= Ind o®ev.

More precisely, this is the left inverse action of G on the space V(v,o,9) of
//(a)-valued functions / satisfying

(1) f(xman)= o(m-l)e-("+p»)ilo*a)f(x) for all aeA9, mEMg°, n G N9,
x G G, and

(2) / is continuous.
When a is a unitary representation, we shall enlarge the space by replacing (2) by
the standard condition

fK\f(k)\2dk< oo. (2')

If a is a differentiable representation of Mg on a Frechet space H(o), we use
I(p,o,9) for the differentiably induced representation lndMpA N ̂ Go ® e". The
corresponding space V(v,oy9) is then the space of all the functions
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C^iCHio)) which satisfy relation (1) above. If (a, H(o)) is a Banach
representation as above, and o^ is the corresponding differentiable representa-
tion on the subspace of smooth vectors, then 1^,0^,0) = /(*>,a, 0 )^ , the
corresponding differentiable representation of G on the space of smooth vectors
inF(*>,a,0)(cf.[23]).

Finally, let g be the Lie algebra of G, and denote by U(g) the universal
enveloping algebra of the complexification of g. Let IT be a continuous
representation of G on a Frechet space F. Denote by VK the corresponding
subspace of AT-finite vectors. Then g and consequently U(g) both act on VK,
Moreover if (TT^, F^) is the corresponding differentiable representation and F ^
is equipped with the Schwartz topology of C°°(G, F), then VK is dense in F ^ .
With the above notation, V(v,o,0)K is then the space of A^-finite functions in
V(r9o99).

1. Whittaker functional for the principal series. Throughout this section we
shall only consider the principal series, i.e., those induced from B. Then U = N0.

For every a E 2, let Ua be the subgroup of U whose Lie algebra is qa + g2a.
The subgroup n«e2 + -A^a *s normal in U and the quotient is isomorphic to
HafzbiUa/ Via)- F o r e a c n a E A, let \a ^ a continuous character of Ua/U2a.
Then x = ILeAXais a character of I L ( E A ( £ 4 / ^2«) a n d therefore one of U, and
every character of U is so obtained. A character of U is said to be nondegenerate
if it is of this form with no xa trivial. Throughout this section we shall fix a
nondegenerate character x of U.

Now, let (TT, V) be a continuous representation of G on an appropriate space
(i.e., such that V^ can be defined). We shall say (77, V) is x-nondegenerate if
there exists a continuous nonzero linear functional A on V^ such that

H*(u)v) = x(u)X(v) (uGU,ve F J . (1.1)

Such a A is called a x~Whittaker functional. Let F* be the space of all
X-Whittaker functional. Then Dim cF* < 1 if m is irreducible and unitary [31].

Moreover, fix 9 c A , and let (77-, F) be a differentiable Frechet representation
of M °̂ and set W= F(O,TT,0) and / = 7(0,77,0). We then have (Theorem 2.2
of [5]).

THEOREM 1.1. DimcPF* < Dim cF*. In particular DimcW* <\if6 = 0.

Remark. Theorem 1.1 is clearly true, if o is replaced by any representation
for which F(^,a,0)oo = F(^,aoo ,0). In particular, it holds for the representations
induced continuously (quasi-unitarily) from a Banach (resp. unitary) representa-
tion o of Mg, as discussed before.

Now for w e W = W(A0), let

A(w) = {a e 2 + I w(a) G S~ }.

Also for a E 2 + , define a coroot / / a E a0 by a(Ha) = 2, and using the notation



978 FREYDOON SHAHIDI

in [24] set

S(w)= {*> G ct£ | Re(*>(//„))>0, VaGA(w)}.

For the sake of simplicity we use I{v,vi) and V(v,7]), v G CLQ, rj & Mo, to denote
I(v,i],0) and F(j>,i7,0), respectively. The following proposition suggests a
canonical choice for a basis in V(v,j])* at least when v E S(w^). Its proof is trivial
(cf. [26]).

PROPOSITION 1.2. Fix v E S(w^) and let wt be a representative for wt. Then
/(J>,7)) is x~Sener^c and a X" Whit taker functional for V(v,7]) is given by

(™>i)x(u)du / E r ( ! M , ) w . (1.2)

Again as in [26], let GD be the derived group of G. Denote by GD the simply
connected covering of GD. There exists a homomorphism a from GD into GD

which is an isomorphism on U. For a function/ E FO,!])^, we define a function
/ o n GD by / (g ) = f(a(g)). Then/belongs to a principal series representation of
GD. Let A be the x-Whittaker functional for this principal series of GD defined by
(1.2). Then X(f) = A(/), / E Viv^)^, where X = X(p,ri). Consequently study of
Whittaker functional reduces to those for simply connected semisimple groups.

Now, given cp E C™{G\ define

MS'"'**) = f v(mo)e
(v+p)^Msmo^)dmodadu. (1.3)

Then/^ E F(^,??)oo. Now for ^ E £(#,), set

^p(g'^'J7)= fU{guwi^v^)x{^)du. (1.4)

Then A(^,T])(/^) = H^(e, ^,TJ). The following result can be proved along the same
ljnes as in [6,26] (already proved for split groups). But since a more general result
is already available [36], we shall only state the result and refer the reader to [36]
for the proof.

THEOREM 1.3. Fix y E CC°°(G). Then Wy(g,v,r\) extends to an entire function
of v on a£.

COROLLARY. The analytic continuation ofX{y,i\) defines a Whittaker functional
for each l{y,r\), f £ a j and 7] E Mo.

To conclude this section, we shall state and prove a lemma (Lemma 1.4) which
we need later.

Assume that G is of semisimple rank one. Then there are three possibilities.
1. GD = SL2(F), F = R o r C , and
2. GD = SU(2,1).
Let a be the reduced root in 2 + , and denote by w the nontrivial element of W.
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We let

w = (°\ ~ o ) if ^
and

0 1
w = 0 - 1 0

1 0 0
if GD = SU(2,l).

To define x = X«> A = {<*}> w e ^ x a nontrivial additive character t//R of R, and if
a is complex we define a nontrivial character of C by \pc = \pR • TrC/R

(TrC/R(z) = 2 Re(z), z E C). We then set x = ^R o r ^c according as a is real or
complex.

Fix an irreducible unitary representation a of AT on the Hilbert space Ha.
Denote by P(o), the projection operator on the subspace of vectors v E Ha

satisfying

o(m)v = 7](m~l)v (m E Mo).

Consider the function fPva on G defined by

fvy]a(kamu) =

Let V be the unipotent radical of the parabolic subgroup opposed to B. For
v E V, define xXv) ~ xC^^^"1)- F° r ^ e ^(^)> set

T{v,f\yo) = f a(wkv)'q(m-l)e-(v+pH{o^a^P(o) dv9

where i; = kvavmvu^~. Then Proposition 3.2 of [24] implies that

f - T(v v a) = f * $
Jwv,wr],o V ' »' / Jv,t],a v,r\,w

where ^ ^ is the measure defined in Paragraph 1.8 of [24]. Now, we define a
Whittaker function of type o by

Then by Theorem 3.3 of [24]

tW). (1.5)

Here x'(®v,VtW) *s ^ e Fourier transform of ^V7]W with respect to xr-
Now, write o | M o = © ^ m ^ , with positive integers m,. Suppose T7j = 17. Choose

e and e' in the space of 77, and define



980 FREYDOON SHAHIDI

where ( |) denotes the inner product in Ha. Then

A ( J>, TJ, W)Jeie'^r71
 = Je,T{v^a)e\wv,wy]

and (1.5) implies

WAi,t1ltW)f(g,wp,wri) = x!(^w)Wf(g9p9ri)9 (1.6)

where by relation (3.4.3) of [24], X'(®P,T,,W) *S defined by

with v = kvavmvuv and / =/^> > 1 ? , at first formally. Observe that x '(*^,w) is a

scalar. The intertwining operator y4(p,rj, w) for each v E S(w) is defined by

A(v,i1,w)f(g)=(f(guw)du ( /6K( M )J . (1.8)

The measure Jw is normalized according to Tate's thesis, i.e., it is the ordinary
Lebesgue measure on the root space of a real root and is equal to idz A dz on the
root space of a complex root. Fix \pR by \pR(x) = exp(2nix)9 x G R. Finally, fix
HaGa such that a(Ha) = 2. Denote ?(//a) by v as well. To be in agreement with
the notation in [27], let C~\v9ri90,w) denote x'(®p,r,,w)-

LEMMA 1.4. Fix x? the representative w and the measure du defining A(V9JI,W)

(and consequently Cx(v,7),0,w)) as above.
(a) Suppose GD = SL2(F), where F = R or C. Then

Cx(v,r),0,w) = y(t\9v)

where y(rj,v) is the corresponding local Tate coefficient. More precisely, if F = R
and 7](m) = sgn(m)c, c = 0,1, then

ifF=C, and

i l l " " ° H-«" "EZ,
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(b) Suppose GD = SU(2,1). / /

u
0
0

0
u~2

0

Ol
0
u\

then

Cx(v,-n,0,w) = (2w)

r. By Lemma 4.4 of [25], we only need to prove part (b). Given v G V,
choose l G g _ a and 7 G g _ 2 a s / R such that v = cxp(X + \ Y). Write wv
G VmvavU, with mv = diag(w,u~2,u) G Mo and ao = diag(ef, l9e~') G y40. Then
using the formulas in page 556 of [12], we have

\\X\\2+Y

(l|X||4 + | r | 2 ) 1 / 2

and

where || || and | | are, respectively, the standard norms on Qa = R2 and g2a ̂  /R,

/ = V- 1 . Moreover A (̂t)) = <1,^> in relation (1.7) is given by

Set

V2

Using p = 4, and dv = dXd(—iY/2), (1.7) is again formally equal to

~v/1.~\~\ j /11 v/'112 i ~y \ / j i ^114 _i I v/"|2\ / ^
I (| l y\ "T~ I I I I I y\. i~ -* I

^R2 X /R

+ | r | 2 ) 1 / 4 . Then, using (cf. [24])

§ f / 8 — An a\ T(ava ^^ da

and changing v to a va, (1.4.1) is equal to

where a, ^ = exp(/2^ + /4F), and Re(^) > 0 (for / > 0, at G ̂ 0 is the unique
element defined by t = <!,#,> in the notation of [24]). It is in this sense, i.e., as a
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Mellin transform, that (1.7) is defined as a convergent integral (cf. Proposition
3.3 of [24]). Of course, one must stay away from the singularities of the
T-function. Set

M O / 1 1 * 1 ' 2 + Y)nM'2X)eM-Wx\\4l-\Y\2)d*tdXd(-iY).
KG/R

Then (1.4.2) is equal to

Now, if we first change Y to \\X\\2Y and then X to X/(l + 1Y\2)l/4, we get

/, = f + o v f Ii^n2w+2(i + Y)nn + \Y\2yn/2~l

JO ^GR 2 - {0 }

\Y\2f4)dXd(-iY)d*t.

Finally, changing t2 to /, t to t/{\ + 17|2)1/4, and t to /2, we have

where

Now setting / = tan^, we see that for Re(j>) < 2

- v/2)

- v/4 + n/2)T(l - v/A - n/2) '

using an exercise in [35].
Consequently for 0 < Re(j>) < 2, Ix is convergent, and to compute it, we only

need to evaluate
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We realize R2 s C and define the absolute value | | on C by \X\ = \\X\f| = r2

(r is the polar radius). Now define a function/on C by f(r,0) = r2n + 2e~r\ We
denote the realization o f /on R2 by g(x, y), where x2 4- y2 = r2. Then the integral
over R2 is equal to g(t2,t2), the Fourier transform of g on R2. Consequently

= ±. fc\a\>/2g(a)d*a. (1.4.3)

Applying Tate's local (complex) functional equation to (1.4.3), we get

/ , = J 1—1 v ' ' (\aV~"/22(a\d*a
3 8 * 2 ( 2 ) - ( | - " / 2 > r ( l / 2 ) J c l ' 8{)

Next, if we substitute \a\ = r2, d*a = 2rdrdO/r2, and g(a) = r2n + 2e~r\ we see
that

h = I / r(V4(4 - ̂
V2) ^

This completes the lemma.

Remark 1. As we shall discuss in Section 3, the exact value of CX(J>,T7,0, w) is
desired since these factors play an important arithmetic role by appearing in the
functional equation satisfied by certain L-functions [25, 27].

Remark 2. The formula in Theorem 3.2.2 of [27] needs an extra factor
/ ^ idi we hereby correct.

2. Whittaker functionals for induced representations. Let QC be the com-
plexification of Q and denote by Gc a connected complex group whose Lie
algebra is gc . As in [16], let

Let Tc be a maximal torus of Gc such that T = Tc n G. We set

^Max^ T c n ^Max- T h e n ^Max = ^Max^O a n d e V e rY 1̂ G ^ 0 extends tO 7}
E MMax and moreover /(J>,T])| G = I(v,7)), V G a j . Assume v E ^ (H^) and let
FMax be the unique generic subrepresentation of V(v,rj) (cf. [33]). Then by
Lemma 6.2.1 of [16] it is x-generic with respect to any generic character x of U.
Moreover KMax | G is the direct sum of all the large subrepresentations of
F(^,T])0 0 , each appearing with multiplicity one [33]. Write VU^X\G = 0 ? = 1 Vt

and assume Vx has a x-Whittaker model which exists by Lemma 6.2.1 of [16]. By
Corollary 6.7 of [33] choose a{ = l,a2, . . • , an E TMax (in fact, in FMax which is
defined before Theorem 6.7.2 of [16]) such that Vt= V?9 where for every
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representation (77,if), we use (ira,Ha) to denote fna(g) = ir(a~lga). Then Vt is
X^-generic, xa'(u) — x(ai~]uai)' Moreover, we have:

LEMMA 2.1. Let SMax be the stabilizer of Vx in rM a x . Fix a E TMax and assume
Vx is xa-generic> Then a E £Max. Consequently each Vi is the unique xa'"gener^c

subrepresentation of I(v, 17).

Proof. We use an argument similar to the proof of Corollary 2.7 of [17]. By
assumption Vx and Vx

a ' are both subrepresentations of Ind ( / t G x (differentiably
induced). If they are equivalent IndG^GM Vx and \vAG^G^ Vx both appear in
indy^Q x a n <i consequently by Frobenius reciprocity FM a x has multiplicity at
least two in I n d ^ c x> a contradiction (Vx is the closure of Vx in V{y9t\)^).

Now, let 9 C A and fix an irreducible admissible x-generic (more precisely
XI M9 Pi ^/-generic) Banach representation (a, H(o)) of M — M^°. Besides unitary
representations, this may, for example, be taken to be the Hilbert space
completion of the Langlands quotient for H{a)K which is equal to the
corresponding induced representation by part f of Theorem 6.2 of [33]. By
Casselman's subrepresentation theorem and [33], choose v0 E (aM)£ and 7j0 E Mo

(we are assuming AM D T and a0 = a0 © aM) with Re(*>0(//a)) > 0 for all
positive roots a in M0, such that 8 : i/(a) /c

cz> VM(VQ9TIQ)K, where ^ ( ^ o ^ o ) ^s t n e

space of the representation of M induced from AMM0(U D M\ AM = expa^ .
For the sake of simplicity, let us denote the image of H(o)K under 8 again by
H(o)K. Let H[o)K be the closure of H(o)K in ^A/(^o>Woo- We need the
following proposition. It is a consequence of Casselman-Wallach's deep results
[34].

PROPOSITION 2.2. The Frechet space of differentiable vectors / / ( a )^ C H(a) is
topologically isomorphic (as a smooth M-module) to H(o)K.

Proof. Since a is large [33], by part f of Theorem 6.2 of [33], there exists a
parabolic subgroup P' = M'A'N' C M, with P'D B D M,A' = A9, D M, 0' C 0,
an irreducible tempered large (Corollary 6.6 of [33]) representation (a', H(of)) of
M\ and ? ' e (ct')c such that o = IM(v',o'90')9 infinitesimally. For every
irreducible admissible (m, M H A^-module F, let F be the minimal completion of
V as defined in Section 6 of [34]. We use similar notation when working with
(xn\Mf D iQ-modules. Since o' is tempered, Proposition 6.10 of [34] implies that
H(o')K=H(o')K, and therefore by Lemma 6.8 of [34], H(o)K=H(o)K =
VM(v\o\6')^. But then Proposition 6.12 implies that H(o)K = / / ( a ) ^ = VM(v\
*',0')oo.

Remark 1. By Theorem 1.1, the representation a' which at first is only large
must in fact be x-generic.

Remark 2. Proposition 2.2 is expected to be true for any irreducible
admissible Banach representation (not only the large ones) of M. This follows
from a result of Casselman which has not yet been even announced as a theorem
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(cf. [34]). We can only refer the reader to a Wallach's remark (Remark 6.16)
in [34].

COROLLARY. Let (o,H(o)) be an irreducible admissible X"gener^c Banach
representation of M. Then Dim c i /(a)* = 1.

Proof. We only have to identify H(o)OQ=H(o)K as a quotient of a
nonunitary principal series (Proposition 6.5 of [34]).

Let V = S(H(o)) and extend 8 to a G-isomorphism 8 between / / ( a ) ^ and V.
Then A(PO>%)| ^ ^ ^ (Corollary to Theorem 1.3) and therefore A(J>0,7]0) • 8 is a
nonzero continuous Whittaker functional for (a, H(o)). Set

\ = \(vo,Vo)'8. (2.1)

Now, let wig be the longest element in the Weyl group W(AM) = W(M,AM).
Let wg = Wf - wie and choose an appropriate representative we in G for ws, i.e., if
w7 and wl0 are the representatives of wt and wie in G and M, fixed as in
Proposition 1.2, respectively, then w9 = w7 • w7 #. Consider the induced representa-
tion 1^,0^,9) = / ( ^ a ^ o o " e (a^)£. Set Nf = JV^W . We then have:

LEMMA 2.3. Take f e V(v, o,0)x. Then

f \(f(n'We))X(n')dn' (2.2)

is absolutely convergent for KQ(v(Ha)) » 0 , a 6 2^". In particular for such v, (2.2)
is a continuous Whittaker functional on F(^,a,^)0 0 .

Proof Let || || be the norm on H(a). Given t ;E / / ( a ) 0 0 , let t5EC°°(M,
/ / (a)^) be the map m\-^oO0(m)v. Then v^>v identifies / / ( a ) ^ as a topological
subspace of C00(M,7/(a)00). Let m c be the complexification of the Lie algebra m
of M. Given D E U(mc) and a compact set w C M , let ||t;||D}W = supxGco||Z)t;(x)||.
By continuity of A, there exist Di E U(mc) and compact subsets co, C M,
/ = 1, . . . , r, such that

Given g E G, write g = A;(g)m(g)a(g)n(g). The set (t5| v E:f(K)} is compact in
C°°(M,H(o)J and by continuity of <pi-»||<p||D/,W/ from C°°(M, / f (a )J to C one
concludes that there exists a positive constant C\(/) such that for all g E G

Consequently the absolute value of (2.3) is dominated by
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which is finite if we choose Re(j>(77a)), a E 2 / , sufficiently large (Lemma 6.5 of
[13]). This completes the lemma.

Now for p E (ao)£ with Re(j>(//J)»0, set

X(f(n'we))X(n')dn\

where/E V(P,O,0)^.
Let V = 8(//(a))cl> VM(v0,7}0)K. Then V is x-generic. Moreover if we realize V

as a quotient of a principal series, Lemma 2.1 and Theorem 1.1 (applied to the
complement of this quotient which is x-degenerate) shall imply that Ind/>^G V ®
ev is x-generic- Consequently X(p + ^o^o)- I n d8 defines a nonzero x-Whittaker
functional for I(p,o,0). We shall now prove

PROPOSITION 2.4. Suppose Re(v(Ha))» 0, a G 2 / .

j<(z>,a) = \(v + ^0 ,^ ) • Ind8. (2.3)

Proof. The equality (2.3) certainly holds if Re(vo(Ha)) > 0 for all the positive
roots a E M9. In fact by Theorem 1.1, choose Ca(v, vo,r}o) E C U {oo} such that

Ca(v,v0,ri0)K(v9o) = X(p + p09ri0) • IndS. (2.4.1)

Then Ca(v,v0,r)0) = 1 for v + v0 E £(#,).
Given <p E Cc">{G,H(p)J9 define £ E F(^,a,^)00 by

J
f
MXAXN

We now choose a special <p as follows. Fix t) E H(o)^ and let <p be a complex
valued function of compact support in N'weP of the form <p(g) = <Pi(/0<P2(w) ^
g=n'wGp and ^(g) = 0 otherwise. Here <p, e CC°°(P) and <p2 E CC°°C/V'). Set
(p(g) = ^(g)t;. Moreover suppose cpx(mari) = ^}\{ma)cp'{{n) with cpj E Cc°°(Mv4)
and (pj7 E Cc°°(A0. Consequently

Kiy^){U) = f <Pi(n)<P2(n')x(*')dndn'
JNX N'

x f e
(p+^0oga)(p\(ma)X(oO0(m)v)dmda. (2.4.2)

Let P^(m) = A(aoo(m)t;),t) E / / ( a ) ^ . We need

LEMMA 2.5. H* cp E CC°°(M) ^«J /e/ A be as in (2.1). Consider

Ecp{vQ^h>°) = f <p(m)Wv(rn)dm.

Then E^p^^a) is continuous in P0. Moreover, given v E / / ( a ) ^ , there exists a <p
such that ^(^0,770,(7)7^0.



LOCAL COEFFICIENTS AS ARTIN FACTORS FOR REAL GROUPS 987

Proof. We only have to check v0 with Re(j>0(//a)) = 0 for some a G 0, since
otherwise Wv(m) is continuous as a function on M X S(wie). Suppose
v_Q = \\mnvn with Re(pn(Ha)) > 0, VaEf l . Choose *//0 G CC°°(M) such that
Sv = f^. Here f^ is defined as fv before with G.M.A.N.v.o^ replaced by
M,M0,AM,U H M, PO,TJO, respectively. Now, let for every function /* on M,
Lmh(m') = h(m~xm'). Then C = (£m^o l m G Supp.cp) is compact. For v G (aM)£
and ^ G C?{M\ let r,W0 = \{v^{^\ Then Urn, 7^0/,) = Tv^). Now using a
standard lemma on distributions, given € > 0, there exists a positive integer N(e)
such that

for all n > N(e) and all \p G C. The lemma is now a consequence of (2.1) and the
definition of Ev(v0,ri09o).

Using Lemma 2.5 and (2.4.2), we now see that for every <p as above and any
v G (CLQ)C> the function /<(*>, a)(/9) is continuous as a function of v0 for all J>0 with
Re(vo(Ha)) > 0, Va G 0. Moreover, given a pair (J>0, J>) as above, <p can be chosen
so that K(^,a)(/^) =7̂ 0. Consequently by Theorem 1.3 and (2.4.1), Ca(p, J>0,T}0) is
continuous for all such v0 (i.e. Re(*>0(//a)) > 0, \/a G 0). The proposition is now a
consequence of the equality Ca(v, vo,7]o) = 1 for v + v0 G £(#/).

COROLLARY. 77*e functional K(V,O) extends to an entire function of v G (a^)J
and for every v defines a nonzero Whittaker functional for F(^,a,0)oo .

We also state a useful corollary of the proof of Lemma 2.5.

PROPOSITION 2.6. Fix v e a£ ara/17 G Mo. Choose <p G CC°°(G) am/ ^ /

^1 a function on G X a£, the function Wy(g,v,T\) is continuous.

Proof. To extend this to other Weyl chambers one has to only use the
functional equation satisfied by Wj(g,v,7]). We remark that having proved
Proposition 2.6 first, Lemma 2.5 would become trivial.

Remark. We can now remove the assumption that TTV, V archimedean, is fine
from Proposition 3.2, Theorems 4.1, 4.2, and 5.1 of [27] and use them in full
generality of a quasi-split group. In fact by the Corollary to Proposition 2.4 one
can conclude that for each v G (a9)^, there exists / G V{v,irO0,6)K such that
^(^^ooX/) = O M ^ o o X / ) ls t n e l° c a l component at infinity of the Fourier
coefficient Ex(s;<j>;e;P0A) of the corresponding Eisenstein series (page 343 of
[27]) whose nonvanishing is crucial to a number of interesting arithmetic results
[27]). The fact that there exists a ^-finite function/for which /c(^,7700)(/) ^ 0 is
essential since the theory of Eisenstein series has only been developed for such
functions. One purpose of the present section is to provide the details of the
results at infinity necessary for the previously mentioned results of [27].
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3. Local coefficients as Artin factors. In this section we shall state and prove
the main result of this paper. More precisely, we shall prove that certain
arithmetic factors defined in [27] are in fact equal to the corresponding Artin
factors defined by local reciprocity law by Langlands [21]. We shall start by
recalling their definitions.

Let 9 C A and choose w E W such that w(S) C A. Fix a representative w E G
for w and let N$ — U D wN0~w~\ where N9~ is the unipotent group generated
by the roots in 2~ — 2^~. Let vE.(ag)^ and fix an irreducible admissible
X-generic Banach representation (a, H(o)) of Mg = M.

As in Section 2, fix v0 E (aM)£ and TJ0 E M O such that 8 : H(o)k c VM(v0,riQ)K.
Since a is generic, by Proposition 2.2 we can identify / / (a)^ as a subspace
of F ^ O o , ^ . Consequently 8 = IndS : ^0,(7,0)^ C V(y + y0,ifo)oo- Given/ E
F(^,a,0)oo, l e t /be its image in V(y + ^Woo* a n d define

A ( v 9 o , w ) f = 8~l - A ( v + v o , r i O 9 w ) f

where A (v + v0,7)0, w)f is defined by

A(p+vo,Vo,w)f(g)= ( f(gnw)dn (gGG). (3.1)

This integral is absolutely convergent if for each reduced root a E 2 / with
w(a) E 2~, Re(>(7/a)) is sufficiently large [12, 13, 24]. Here we have extended v
to a0 by making it zero on aM = aM<?. Moreover for every such *>, A(v,o,w)f
E F(w(*>),w(a),$(0))oo a n c ^ t n e m a P A(P,O,W) is continuous with respect to the
corresponding Schwartz topologies. Also (using 3.2)), as a function of v, it
extends to a meromorphic function of v E a£, a = â  (cf. [12, 13, 24]). Observe
that f o r / E F O , ^ ) ^ ,

f (?GG). (3.2)

Now, let K(V,O) and /c(w(^),\v(a)) be the corresponding Whittaker functionals
for F(^,(j,0)oo and F(w(^),w(a),w(0))oo, defined by (2.2), respectively (we shall
use analytic continuation of K(V,O) to other chambers to define K(W(V), W(O))).

Then by Theorem 1.1, for every v with Re(^(//a))»0, Va E 2 ^ , there exists a
complex number Cx(v,o,0,w), a priori may be identically infinity, such that
(Theorem 3.1 of [27])

K(p,o)(f) = Cx(p9aA^)K(w(v)9w(a))(A(p9a9w)(f))9 (3.3)

where/ E V(p,a,0)oo. Consequently by corollary of Proposition 2.4, CX(P,O,0,W)

extends to a meromorphic function of p on a£. Moreover, an argument similar to
the proof of Theorem 3.1 of [27] shows that for an open dense subset of ct£, the
function

K(W(P),W(O))A(P,O,W)
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is not identically zero, and therefore, using (2.2) and (2.3), (3.3) implies that

Cx(r,o,8,w) = Cx(v0+ v9riO909w). (3.4)

Using Proposition 3.2.1 of [27] and Lemma 1.4 of the present paper,
Cx(v0 + J>,TJO,0, w) can now be explicitly computed. The purpose of this section
is to interpret these explicit formulas in terms of the Langlands' Weil group data
attached to a by local reciprocity law at infinity [21].

To explain our result, let F denote either R or C. Let WF be the Weil group of
F. It is equal to C* if F = C; and consists of pairs (Z,T), Z G C*,
T e g(C/R) = {l,a0}, the Galois group of C over R, with multiplication

(z\ >Tl)(*2>T2) = (zlTl(z2)aT,,T2»TlT2)>

where aTitT2 = 1 if TX = 1 or T2 = 1 and aTj>T2 = — 1 if T, = r2 = o0, if F = R.
When G is a complex group, we may, as we in fact do, by restriction of scalars

consider G as a group over R. For this reason from now on we shall assume
F = R .

Let <p be the homomorphism of WR into LM the L-group of M, attached to a
(cf. [21]). Moreover, if LN is the L-group of N == N#, let Ln be its Lie algebra, and
let Ln^ CLn, be the subspace generated by those roots av for which w(a) is
negative. Denote by p the adjoint action of LM on Ln^. Then p • <p is a complex
representation of WR. Let al9 . . . , an be the distinct values of 2pe(a

v ), a G Ej"
with w(a) G 2~, where 2p# is as before the sum of roots in 2 / . Now, for each /,
/ = 1, . . . , « , let Vt C

Lrt£ be the subspace of Ln$ generated by those roots av

for which 2p0(a
v ) = ar Then each Vt is ^-invariant under p • <p (as well as

p • <p). Let ri: = p • <p | Fj- and let /; be its contragradient.
Finally to specify w, fix a reduced decomposition of w and for each simple

reflection in the decomposition choose a representative as in Lemma 1.4. Now,
let w be their product according to this decomposition. We shall use this
decomposition when we apply Proposition 3.2.1 of [27] to compute Cx(v0 + P,TJ0,

0,w).
We fix x as follows. Let ̂ R(x) = exp(27nx) and \pc(z) = ^R(TrC/R(z)) (as in

Lemma 1.4). Now for every simple root a, let Xa(exP(w«^«)) = *Wwa)> n
a
 e R> o r

Xa(QXP(na^a)) = ^c(w«)' na e >̂ according as a is real or complex. Here Xa is
normalized by [Xa,X_a] = 7/a, where a(Ha) — 2.

Every complex irreducible representation of WR is either one or two
dimensional. In the latter case it is always of the form Ind^ ^w 9, where 0 is a
character (not necessarily unitary) of Wc = C*. Moreover, class field theory
implies that a one-dimensional representation of WR is in fact a character of R*.
Fix a complex number s.

Assume first that T is a one dimensional representation of WR. Write
T(X) = (x/|x|)€|.x;|', t G C, € = 0 or 1. Define

+ t + *)) (3.5)
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and

€(*,T,*R)=Ie, (3.6)

i.e., the Hecke factors attached to T as a character of R*.
Next, suppose T is a two dimensional irreducible representation of WR. Then

r = Indcnw/R0, where 0(z) = \z\c{z/z)n/1, z E C*, teC, |z|C = zz, and » G Z .
Define

L ( J , T ) = 2 • (27r)- (5+^ |w | /2)r(5 + / + |/i|/2), (3.7)

the Hecke L-function attached to 9. Moreover, let

« C ( * . » ^ C / R ) - ' H (3-8)

be the corresponding root number, and as in [18], define

\(C/R,^R) = L (3.9)

Then the root number attached to T is given by (cf. [18])

Now, if T = 0/T- with irreducible T.'S; define

'/) ( 3 - n )

and

€(^T,^R) = n < ^ T y . ^ R ) . (3.12)
j

Finally, we set

Y(J ,T ,* R ) = € ( J , T , ^ R ) L ( 1 - J , T ) / L ( J , T ) , (3.13)

where f is the contragredient of T. Then the main result of this paper is the
following:

THEOREM 3.1. Let o be an irreducible admissible x-gener^c Banach {in
particular unitary x~generic) representation of M. Then

Cx(-2sPe,o,99w) - A(C/R,^R)2"^ f [ <(W< ,*»

where m and p are the number of rank one groups Ga, a reduced, a E 2^",
w(a)6 l l~ , whose simply connected coverings are isomorphic to SU(2,1) and
SL(2, C), respectively.
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COROLLARY. Let a be an irreducible admissible ^-generic Banach representa-
tion of M, x' T^ X- Then x' can be chosen in such a way that up to a determinable
sign Cx>( — 2sp0,o,O,w) is equal to the right hand side of (3.1.1).

Remark 1. Theorem 3.1 and its corollary are the most general result that at
the present time one can prove in the direction of decomposing the local
coefficients in terms of representations r{ of WR. In fact having the properties of
Artin factors in hand, Theorem 3.1 allows us to treat the archimedean places the
same as the nonarchimedean unramified ones (cf. [20]).

Remark 2. Let m and n be two positive integers and let G = GLw + m . Fix
M = GLW X GLm. Now Theorem 3.1 together with Theorem 5.1 of [28], when
applied to Theorem 4.1 of [27] will give a new proof of the functional equation
satisfied by the Rankin-Selberg L-functions attached to the pairs of cusp forms
on GL/1(A/r) and GLm(AF) (AF is the ring of adeles of a global field F)
introduced by H. Jacquet, I. I. Piatetski-Shapiro, and J. A. Shalika (cf. [7, 8]).

Remark 3. Corollary 2 is a consequence of the fact that if o is x'-generic, then
X' can be chosen to be of the form x' = IIXa> « simple, with x'a(

x) = X«(*«•*)>
€ a = ± l (cf. [33]); combined with Proposition 3.2.1 of [27] applied to
CX,(P0 + P, 7)0,0, w). It can also be stated as follows.

For each /, write ri = © 7 ^ , with r^ irreducible representations of WR. Then
for each pair (/,/), there exists a non trivial additive character i//.., determined by
o and w, such that

i=\ j

We first establish a simple necessary lemma.
_ Suppose for a moment that we are in the rank one situation and assume

GD s SU(2,1). Fix ^ £ a f and ?] G M O . AS in Lemma 1.4 choose « G Z such that

= einB.

Fix w, \pR9 and the measure du as in Lemma 1.4. Finally if a is the unique
reduced root, define va = v(Ha), where (x(Ha) = 2. The character 17 defines a
unitary character of C1, complex numbers of absolute value one, which we
extend to C in the obvious manner. We shall again denote this by 77.

Let y2a be the coroot of la at — 1. More precisely for any root 8, let S v be its
dual root (or coroot), i.e., the map from SL2(R) to the group. Then y8 = S v (— 1).
In the case in hand y2a = diag(— 1,1,-1). We now define a character 77 of R* by
rj(x) = (X/|JC|)C2" where e2a = 0 or 1 according as n is odd or even.
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Next, let a and ft be the simple roots of SL3. Then the coroots a v and fi v are
simple roots of PGL3(C) = LGp. In the formalism of L-groups they are so
normalized that va = v(Ha) = 4p(av ) for every v E a£. In fact fixing v = a + /?,
v(ay ) = 2<a 4- /?,«)/<«, a) = 1, while on SU(2,1), this represents 2a, leading
to v(Ha) = 2<2a,a>/O,a> = 4. Observe that if p = a + p is half the sum of
positive roots, p(a v + /? v ) = 2 and therefore

(-lf«=-(-l) ' )<«v+ '3V>1?(Y2a). (3.14)

Let Lc(s,ri) and ec(s, r], ̂ C/R) be the Hecke L-function and root number
attached to 17 as defined by the right hand sides of (3.7) and (3.8), respectively.
Similarly define LR(s,rj) and eR(s, fj, \pR) using the right hand sides of (3.5) and
(3.6), respectively. Finally set

/ / S,T\) (3.15)

and

Y R ( ^ ^ ^ R ) = CRC^^^R^RC 1 ~ S^)/LR(S^)- (3.16)

We now prove:

LEMMA 3.2. Suppose GD = SU(2,1). Then

Proof. For simplicity let v = va — v(Ha) = 4v(av ). Suppose first that n is
even. Then e2a = 1, and the lemma is a consequence of Lemma 1.4, relation (3.9),
and the identities

T(v/A + |>i|/2)r(l - v/A - \n\/2) = 7r/sin(|w|7r/2 + w/4)

and

T(l - v/A)T{\/2 + v/A) = irx

The odd case can be proved similarly.

Remark. The sign appearing in (3.2.1) takes an important meaning when one
considers SU(2,1) over a nonarchimedean field. In fact, using the calculations in
[9], one is led to the sign of E/F when E is the quadratic extension of F over
which G splits (cf. [30]). By the sign of E/F we shall mean + 1 or — 1 according
as — 1 is or is not a norm for NE/F.

Finally, we remark that when GD = SL2(C), again the formalism of L-groups
implies v(Ha) = 2v(av ) and consequently the corresponding Y(T),J>) of Lemma
1.4 equals
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We now start proving Theorem 3.1. We shall first prove the theorem when a is
in the discrete series. Consequently we assume that P is cuspidal, i.e., M admits
discrete series.

Throughout this section, we shall extensively use certain results of Knapp and
Zuckerman in [15]. Since the paper is already in print we may use certain
notations or results without explicitly mentioning them.

Let m0 be the Lie algebra of MQ. Then aoffimo is a Cartan subalgebra of g,
with a0 = a © aM. By assumption on M, let b be a Cartan subalgebra of m, the
Lie algebra of M, whose intersection with mDer is compact. We fix a fundamental
sequence 8X, . . . , Sr of positive noncompact (mc,bc)-roots. For each 8-9 let eg be
the corresponding Cayley transform (page 403 of [15]), and set c = eg . . . eg.
Then aM = c (^ = iR i / 8 ~) . Let p^ be half the sum of positive (mc ,(aM ©mo)c)-
roots where the positive roots are chosen as in page 426 of [15].

The Cayley transform c defines an isomorphism c : (a © b)c = (a0 ffi mo)c by
sending noncompact roots of (b 0 mo)c to the roots of (aM)c. We shall use this
isomorphism throughout the proof.

An (a © b)c-root € is called real if c | b = 0 and complex otherwise. If € is an
(a0 ffi m0)c-root, we call e real if e | m0 = 0. Otherwise it will again be called
complex.

Let € be a (g c , (a ffi b)c)-root. We call I its conjugate if (e,H) = <€,//> for
H G a, while <€, / />= — <€,//> for H G b. We define the same notion for
(9c>(ao® m0)c)"ro°ts. The following simple lemma is useful.

LEMMA 3.3. Let e' be an (a®h)c-root. Choose two (ao®mo)c-roots e and e0

such that € = c(e') and e0 = c(l'). Let €, = c~x{l) and e2 = c~\i0). Then e2 = ix.

We shall now recall how cp is defined.
Let ii be the Harish-Chandra parameter of a. Denote by B the Cartan

subgroup of M whose Lie algebra is b. Let L = Hom(C*,L5°) and L v

= Hom(L£°,C*). If we choose h = a X (1 X a0) (E
LM as in Lemma 3.2 of [21],

then with an appropriate choice of a, <p(l X a0) = A. Observe that hav = — av

for every root a v of LB° in LM° (Lemma 3.2 of [21]). Let a denote the action of
h on L, L v , and LB°. The homomorphism <p is then defined so that (Lemma 3.4
of [21])

\v(<p(z)) = z<Mv>z<5^v> (3.18)

for all z G C* = Wc and Av G L v . Consequently, while p • cp(l X a0) fixes every
real (a ffi b)c-root it permutes each pair of conjugate complex (a ffi b)c-roots,
generating a two dimensional irreducible representation of WR.

We start with those ct0-roots a G 2^", with w(a) G 2~ which are restrictions of
complex (a0 ffi m0)c-roots. Their images under c ~x are then restrictions of
complex (a ffi b)c-roots. Let a v : C* -> SL2(C) be the corresponding coroot and
set v = v + J>0, where as before v G a£ and v0 G (aM)£. We prove:

LEMMA 3.4. Choose two complex (a0 ffi xno)c-roots e and e0 such that e \ a0 = a

and €0 = c(c~\e)) (cf. Lemma 3.3). Let e{ = c~\e) and denote by T' and T, the
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irreducible restrictions of p • <p to the two dimensional root spaces generated by
{X€,v 9Xrw } and {X€v,X-€v}, respectively. Then

= y(^(€ 'v) ,<^R)Y(^(€1
v) , r1^R) . (3.4.1)

Proof. Set \L= \i+ v. Then by equivalence of infinitesimal characters (for
example) for a and IM(v0,7}0) one concludes that up to an element of
W(AMM0: (MA)C) which we may assume is equal to 1

£0770= c(/x). (3.4.2)

Applying (3.4.2) to e,€0 and their conjugates, we obtain

( v ) + iiZ(€l
v))/2, (3.4.3)

v ) + £(i,v))/2, (3.4.4)

n(T,0-av) = i5;(e 'v)-/I(€1
v), (3.4.5)

and

«(%-«ov) = j 5 ( * ' v ) - £ K ) , (3-4.6)

where for every character X of C1, the integer n(X) is defined by

Moreover ji(e'v ) — jit(€/V ) and ]5(€1
V) — ]ix(€1

v) are also integers (cf. [21]). The
following simple lemma is useful.

LEMMA 3.5. (a) Let z and z' be two complex numbers such that z — z' is an
integer. Set

c(z,z') = iz~z> • 2(277)-(1-z/)r(l - Z ' ) /2(2T7)~T(Z) . (3.5.1)

Then

c(z,zf) = iz~z> • (277)7 + z '/2r(z)r(z /)sin(77z /). (3.5.2)

In particular c(z,zf) = c(z\z).
(b) Let zx,z2,z3, and z4 be four complex numbers such that zx — z2, z3 — z4,

zx — z3, and z2 — z4 are integers. Then

c{zx ,z2)c(z3,z4) = c{zx ,z3)c(z2,z4). (3.5.3)
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Next observe that

yc(P(a v ),TJ0 • a
 v , ^ C / R ) = c( jx(e'v ), /Z(ciV))>

,*R)c( /Z(c'v ), /*(? v )),

and

using the discussion after Lemma 2.3 of [2]. Lemma 3.4 now follows if we apply
part b) of Lemma 3.5 to zx = fl(efV ), z2 = j£(€,v), z3 = /Z(€/V ), and z4 = ji(e?).

Remark. Suppose ex = €r or €r. Then € = e0 or e0 and Lemma 3.4 trivially
reduces to

X ( C / R ^ R ) Y c ( ? ( « v ) , % • a v , ^ C / R ) = V ( , ( £ ' v
 ) , T ' , ^ R ) .

We shall now consider those a0-roots a G 2 / , with w ( a ) E 2 ~ which are
restrictions of real (a0 © m0)c-roots. With abuse of terminology we shall call these
roots, real ct0-roots. For the moment we leave aside the case when G has a factor
of type G2. Then, using Lemmas 7.4 and 7.5 of [15], we shall divide them to three
categories.

The first category consists of those real a0-roots /? which restrict to complex
a-roots and are not of type (dl) of Lemma 7.4 of [15]. More precisely, if e' is a
real (a0 © m0)c-root which restricts to ft (not of type (dl)), we would like that
c~\e') be a complex (affib)c-root. Then by Lemma 7.6 of [15], neither 2/? nor
/3/2 is an ct0-root. By Lemmas 7.4 and 7.5 of [15], there always exists an a^-root
8 which is the Cayley transform of a 8 such that

2 < / 3 , 8 > / | S | 2 = ± l (3.19)

and

2<p+,S>/|8|2EEl(mod2). (3.20)

Following Knapp-Zuckerman (page 433 of [15]), we shall now group ft with
three other such real ct0-roots. The procedure is entirely due to them. We recall
this procedure.

Let

be the projection of /? along 8, r = 2<£,S>/|S|2 . Then for such roots
r = ± | /? |2 / |8 |2 . For simplicity, let /?0 = p8fi. Let a = /? | a be the corresponding
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a-root. Then /? = a + a7 with aI ^ 0 a linear combination of ctM-roots. Let
/? = a — <Xj. Then (/?)0 = /?0. Also observe that since /? is real so is /?0 and by
(3.19) we have

(3.21)

As before, for every real a0-root 8' define c8, = 0 or 1 by

Then by Lemma 7.2 of [15] and relation (3.20) above

(3.22)

Consequently (3.21) implies

Similarly

€« + €o = 1 + ^°\ ' (mod2). (3.24)
P Po I o |2 ^ ' ^ '

Let € and €0 be complex (a © b)c-roots such that c(c) and c(e0) restrict to (3 and
f30. Then c(e) and c(€0) restrict to (3 and /?0, and if pi = /x + ^, then by Lemma
7.2 of [15] and equality | j80| = | j8|

\Po\2

— r'

= M(e ) ± | g | 2 • (3-25)

Similarly

• « « " ) * ^ ^ - < " 6 )
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We now prove

LEMMA 3.6. Let r and T0 be the irreducible restrictions of p • <p to the two

dimensional root spaces generated by {Xev,X-€v } and {Xev,X-ev}9 respectively. Then

Y R ( * ( P V )>% ' P V > * R ) Y R ( ? ( A>v),i|o • A>v , * R )

) (3.6.1)

/V00/. We start with a simple useful lemma.

LEMMA 3.7. Suppose e = 0 or 1 and fix a complex number s. Define a character

(3.7.1)

To continue, assume first that

2<*>0,8>/|S|2EEl(mod2). (3.6.2)

Then relations (3.23) and (3.24) imply that €g = c^ and ê  = c^o. Applying
Lemma 3.7 to the factors in the left hand side of (3.6.1) implies that it is equal to
the product of

(3.6.3)

with

(r( M(C v »r( /i(eo
v))r( ̂ v »r( /rft)))"' (3.6.4)

and

^ ^ ^ ) _ € _ ^ - i ) ( 3 6 5 )

where we have repeatedly used (3.25), (3.26), and (3.6.2).
Checking all the possibilities for e^ and c^, it is clear that (3.6.5) is always equal

to

-(4sin77/I(€v)sin77]u:(€v))"1 . (3.6.6)

On the other hand by (3.5.2) the right hand side of (3.6.1) is equal to the
product of (3.6.3), (3.6.4),

)"'I<8oV), (3.6.7)
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and

But now by (3.25) and (3.26)

£(€ v ) - /Z(€v) + /Z(€O
V) - /Z(eo

v) = 2(±2<»0 ,S>/ |8 |2) ,

while

= — sin77/I(€v),

and the lemma in the odd case follows if one notices that (3.6.7) is equal to 1,
using (3.6.2) and (3.9).

The even case can be proved similarly, completing the lemma.
Next we shall consider all those real a0-roots which are of type (dl) of Lemma

7.4 of [15]. They clearly restrict to complex a-roots. The following lemma
explains a crucial fact about such roots. Its proof can be extracted from the
discussions in page 436 of [15].

LEMMA 3.8 (Knapp-Zuckerman). Let S{, . . . , 8C be so that {a±\8j\\ < j
< C} provides all the odd roots ft of type (dl) restricting to a, where Sj's are ordered
according to their original ordering. Then

KPM , «;>/!«/ = C + l - 7 ( m o d 2 ) > K 7 < C. (3.8.1)

Suppose C is odd. Group fix = a + £8,, fi{ = a — ±8U and 2a together. We
shall first consider other fij = a + ^8y, i.e., we assumey =̂ 1. We then group them
as {fy, pj, fy+l9 PJ+l} with 1 < ; < C. We now prove

LEMMA 3.9. Suppose C is odd. For each 1 <j < C, choose real (ao©mo) c-
roots ej and ej+l such that ej \ a0 = fy and €y'+1 | a o = j8̂ .+ 1. SW €j = c~\ej)
and cy-+1 = c~1(cy'+1). Let Ty and Ty+1 be the irreducible restrictions of p - (p to the
two dimensional root spaces generated by {X^.X-^} and {X€y+i9Xiy{}. Let
S = {2k | 1 < k < (C - l ) /2} . Then for each j G 's ' 7+' /+ '

(3.9.1)
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Proof. Observe first that

Moreover y^ = y2ay8 together with Lemma 7.2 of [15], imply that

[ 2 (

Set vfi = 2<*>0,S/>/|S/- Then by Lemma 3.8

% = % = *ia + ^ + C + 1 -j(mod2). (3.9.2)

Similarly fory + 1. Observe that pg = —v^ I =y andy + 1. _
Using Lemmas 3.5 and 3.7, and the equalities ?(/J/V) = ]d(€/

v) and ?(jS7
v)

= j5(€/
v), l=j andy 4- 1, proof of (3.9.1) is equivalent to equality of

•cosf ( ? ( ^0 - %,)cosf ( ? ( ^ 0 - %,))"' (3-9-3)
with

- / ^ - V ^ . "%.(sinOT(i8y.v )sin7r?(^.+ 1))~1 . (3.9.4)

To prove this, let cz = *>{($?) — c^, I =j,j + 1. Then

/ =y,y 4- 1. Consequently

cos

I =j,j + 1, and therefore (3.9.3) is equal to

(_1) >!>, + '*+,-<*-**+, (4cos2(wc;./2)cos2(7rc/.+ 1 / 2 ) ) " 1 . (3.9.5)

Moreover by (3.9.2)

(3.9.6)
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which immediately shows that (3.9.5) is equal to

(_

Now (3.9.4) equals to

_ ( _ l)'» + '«•• (sin *ri?(j8/ )si

and to complete the lemma we only have to show

s i n v v ( j 8 y X , ) ( 1) ̂  + e i ( 0 / )

But this is a simple consequence of (3.9.6).

Remark. When C is even this is all we have to do. __ _
To complete the second category we now consider {/?,,/?,, 2a = )5l + /?,}.

While a is not an a0-root (Proposition 7 of [10]), 2 a is one and restricts to a real
a-root. Since a is not an a0-root, la is a real reduced a0-root; (G2a)D = SL2(R)
and the corresponding local coefficient is equal to yB(?((2a)v ),TJ0 • (2a)v ,\pR).
For simplicity, let /? = px and 8 = 8!. We need the following lemma.

LEMMA 3.10. Choose two real (a0 © mo)c-roots e' and e'o such that e'\ao= ft
and €Q| a0 = 2a. Set e = c~l(e') and c0 = c-1(€o). Let r and r0 be the irreducible
restrictions of p • cp to the two and one dimensional root spaces generated by
{X€v ,Jf-v } and X^y , respectively. Then

V(€0
V),T0,^/R). (3.10.1)

Proof. We define ê  = e^,c2a, and v$ = - vp as in Lemma 3.9. Moreover let
vla^2(v,2a)/\2a^ which using |2a|2 = 2|/?|2 is equal to v(/3v ). Since C is
odd, relation (7.25) of [15] implies that

2(pa,2a)
— = C + I(mod2)

EE0(mod2),

where pa is half of the sum of positive a0-roots restricting to a and 2a. The
element y2a is central and therefore Lemma 7.3 of [15] together with Lemma 2.3
of [2] imply that p • cp(l X a) acts on Xev by ( - I)1"62*. Consequently by Lemma
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3.7 and the discussion after Lemma 2.3 of [2]

T ( ^ ( € O V ) ^ O ^ R ) = «1"€2a(2(27r)"I'2ar(y2a)cos(9r(y2a - 1 + €2a)/2))~1 . (3.10.1)

Using an argument similar to the one given in Lemma 3.6, we only need to prove
the equality of

1 (3.10.2)

with

- , •* -* -«*• (sinw(j8 v)cos(77(»2a - 1 + e 2 a ) /2) )~ \ (3.10.3)

We first prove the equality of root numbers, i.e.,

/*+*+c 2 a = _ _ r , - ^ - ^ (3.10.4)

Since 2<p^ ,5 ) / | 8 | 2 = C is odd, the equality yp~ yp = y2al8 immediately
implies

tp = e2a + vp + I(mod2). (3.10.5)

Now the left hand side of (3.10.4) is equal to

— 1 ) 2tt " / ? T 1 . | e 2 « (3.10.6)

while the right hand side equals

proving the validity of (3.10.4).
The equality of the remaining terms in (3.10.2) and (3.10.3) can now be proved

by letting v$ be odd or even and checking the equality for all the possibilities of
tp and e2a which are related by relation (3.10.5). The lemma is now complete.

It remains to check those real a0-roots which restrict to real ct-roots. In view of
Lemma 3.10, there are only two possibilities.

LEMMA 3.11. Let a be a reduced real aQ-root which restricts to a real a-root.
Moreover assume that ifa/2 restricts to an a-root, then the number of pairs of odd
aQ-roots of type (dl) restricting to a / 2 , is even. Choose a real (a0 © xn0)c-root e'
such that e' | a0 = a. Let e = c~\e')9 and denote by T the one dimensional restriction
of p - <p to the root space generated by Xew . Then the corresponding local coefficient
is equal to yR(v(av ),Vo' ^ V ^ R ) which in turn equals y(v(ev ),T,I//R).

Proof. Since a \ a is real, la cannot be a a0-root and therefore by part (a) of
Lemma 1.4 the corresponding local coefficient is equal to yR(v(av ),TJ0 • a

 v ,i//R).
Moreover as an a-root 2{pa,a}/\a\2 is odd (the number C of pairs of odd (dl)
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roots, restricting to a/2 | a, is even). Since ya is central, the equality

is now a consequence of Lemma 7.3 of [15], together with Lemma 2.3 of [2] and
the equality of infinitesimal characters.

LEMMA 3.12. Let a be a reduced a0-root such that 2a is also an a0-root. Then
af = 2a restricts to a real a-root. Choose a real (a0 ® m0)c-root e' such that
ef | a0 = a'. Let e = c~\e'), and denote by r the one dimensional restriction of p • <p
to the root space generated by X€v . Then in the notation of Lemma 3.2

Proof Let 8 = a \ a and 8' = a' \ a. Then by Lemma 7.6 of [15], 8' is real. Let
C be the number of root pairs of type (dl) restricting to 8. Since a is an a0-root,
C = 0. Then by relation (7.25) of [15]

with obvious meanings for p8 and pa. Moreover ya, is central and therefore the
lemma is a consequence of Lemma 7.3 of [15], Lemma 2.3 of [2], and the
definition of (TJ0 • (a

 v + / ? v ))~ (cf. relation (3.14)).

Proof of Theorem 3.1. When o is in the discrete series and G does not have a
factor of type G2, the theorem is a consequence of relation (3.4), Proposition
3.2.1 of [27], together with Lemmas 3.4, 3.6, 3.9, 3.10, 3.11, and 3.12.

When G has a factor of type G2, the discussion in page 437 of [15] shows that
Lemmas 3.6 and 3.11 of the present paper, when applied to appropriate roots will
prove the theorem. We leave the detail to the reader.

Next assume that o is tempered and x I U n M^-generic, Mg = M. Choose
0' CO, a parabolic subgroup M n Pe, = (M D A9)MQ, • (M n N9) C M a dis-
crete series representation & of M^ and an imaginary v' E /a^ such that
ac^>IMo(p\a\0/), the representation induced from Pg, C\ Mg° to Mg. Extend v to
v on ((v)£ in the obvious manner. Then

CX(P, a, 0, w) = Cx(? + v\ a\0\ w) (3.27)

and Theorem 3.1 is immediate since the factors attached to a and a' ® ev are the
same [21].

Finally assume that o is any irreducible admissible x~ge n e ric Banach
representation of Me°. Choose 0' C 0, a tempered representation a' of Me

0,, and
vr E a£, such that o = IM(p',o',9') (Theorem 6.2 of [33]). Then (3.27) again holds
and for the same reason the theorem is again immediate. This completes the
proof of Theorem 3.1.
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To conclude this section we would like to give an analogue of Theorem 3.1
when G is a complex group and WR is replaced by Wc. The representation p • <p
is now one of Wc. Define ri and ai9 i = 1, . . . , n as before. We then have:

THEOREM 3.13. Suppose G is a complex group and for any <p: WQ->LM
consider ri9 / = 1, . . . , « , as representations of Wc. Let o be an irreducible
admissible x-generic Banach (in particular unitary x-generic) representation of M.
Then

(3-13.1)
L(ais9ri)

4. Identities for intertwining operators. To conclude the paper, we shall prove
certain identities which are of importance in deeper analysis of the trace formula
(cf. Introduction of [29], where we have proved a similar result for SL(r) over a
/?-adic field, also see [1]).

As before G is the group of real points of a quasi-split algebraic group over R
and for every 0 C A, we let MQA9N0 be the Langlands decomposition of Po. Fix
X as in Theorem 3.1 and let (o,H(a)) be an irreducible tempered x-generic
representation of M9°. Every tempered L-packet contains a unique such
representation (cf. [33]). Set

W(o)= {we W(A0)\wo^o}.

For every w E W(o\ choose a representative w E G as in Theorem 3.1, and
given v E ((*#)£ define A(p,a,w) by relation (3.2).

Next, for the complex representation p-q> of WR9 let L(s,p-(p) and
€(5,p- <p,^R) be the corresponding Artin L-function and root number, respec-
tively. Set (cf. [19])

r(o,w) = €(0,p • <p,*R)L(l,p • <p)/L(p,p- <p) (4.1)

and

R(v,a,w) = r(o,w)A(v,a,w). (4.2)

Fix an intertwining operator $:wo ^ o (both acting on H(o)\ and let
$ : F(0, wo,0) s F(O,a,0) be its lift, i.e., 4>/(g) = $(/(#)). Write

q

/ (O,a,0)= ®vj.

Then each irj appears with multiplicity one and consequently <I> • R(Q,o,w) acts
on each Vj as a scalar €aw(77/). Since w, J«, and \pR have already been fixed,
%tW(iTj) depends only upon <£. We remark that the choice of <i> may be absorbed
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by that of w; but we prefer to keep them separated. Our goal is (for a canonically
fixed <3>) to compute each eaw(irj).

Next choose 0r C 0, a discrete series representation o' of MQ, and v' G ap such
that oCL>IMp(v',of,0'). Then wocz^IM$o(wv\wo\w0f). Consequently, we may
assume 0' = w0f, o' = wo', and *>' = wvf. Moreover

7(0, o,0 ) -> / ( / , o',0').

Let /? be the R-group for I(v',o\0f). It is a product of groups of type Z/2Z
which determines the reducibility of I(v',o',0') (Theorem 13.4 of [13]). In fact its
dual R has a simply transitive action on the components of I(v',o',0'). Let
77^7(O,a,0)^>I(v',o\0') be the unique x-generic subrepresentation of I(ve,o\
0'). Choose 1 = rx,r2, . . . , r G R such that W. = ,̂ • 77,7 = 1, . . . , q, TTX = 77. If
w G WT(a) is so that <i> • jR(0,a,w) is not a scalar (which happens if 1(0, o,0) is
reducible, cf. Lemma 7.9 and Theorem 13.4 of [13]), then w G W(o' ® ev) is in
fact in R. Observe that

R(r',o',w)\V(O,o,0) = R(0,o,w).

Finally, let X be a x-Whittaker functional for ^ ( a ) ^ . We fix $ such that
<A,t>> = <X,3>t>> for every v G / / ( a ) ^ . Then $ is unique and independent of the
choice of X. Now, for every j9j = 1, . . . , q, let x7 be the tempered character of 77y.
In what follows, for every/ G CC°°(G), we let

THEOREM 4.1. Fix w G W(o) and choose <3>, i//R, dn, and w as above. Let m and
p be the number of rank one groups Ga, a reduced, a G ^ ^ , w(a) G E~~, whose
simply connected coverings are isomorphic to SU(2,1) and SL(2, C), respectively.

(a) Suppose $ • R(0,o,w) is a scalar. Then

trace(* - R(O,o,w)I(o,0)(f)) = X(C/R,>pR)2m+r £ Xy(/). (4.1.1)

(b) Suppose § -7^(0, a, w) w wo/ a scalar. Regard w as an element of R. Then

-R(O,a,w)I(a,0)(f)) = X(C/R,^Rfm+^ /}(w)xy(/). (4.1.2)
1

. In view of Theorem 3.1, the theorem is a consequence of a result of
P. Delorme [3] and Lemma 4.2 below. In fact, by part (iv) of Theorem 1 of [3]

and the proof reduces to calculating eaw(ir). But by Theorem 3.1 (setting s = 0 in
(3.1.1)) this follows immediately from the following lemma.
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LEMMA 4.2. Suppose o s wo. Then L(l, p • <p) and L(l, p • (p) are fort //w/te and
equal.

Proof. By definition of Artin L-functions we may assume o is in the discrete
series. Let e be an (a0 4- b)c-root. Then by (3.18)

where <JU,€V > - <a/x,€v > is an integer [21]. Now, by Lemma 5.3.14 of [32], w
may be realized as an element / in the centralizer of (p(WR), as well as in the
normalizer of L(BAgf, both in LG°. Then for z G C* C WR9 <p(z)/ sends *€v to
(/(ev ))((p(z))^T/(€v) which must be equal to € v (<p(z))Xl{evy Consequently

). (4.2.1)

Now, observe that p -<p may be realized as the adjoint action of <p(WR) on

r « < / i , € v > + <5,i,£v> (4.2.2)

and

) . (4.2.3)

Denote by l(t) and l(n), the values of (4.2.2) and (4.2.3), when e v is replaced by
/(€v ), respectively. Then by (4.2.1), t = /(/) and n = l(n).

Suppose first that e is complex. Then p • <p| {X^.X^ } and p-q)\{Xl^v>>9

X^vy} are both the irreducible representation induced by |z|^2(z/z)W//2 from C*
to WR, and therefore

Next, assume e is real. Then <p(l X a)I sends Xev to cl^w)Xl^) which must be
equal to c^X^v^ proving c€v = c/(€v)? c€v = ± 1 . Moreover, using (4.2.1), one
concludes that / = l(t) = 2< JU,€ v >. Writing x = (x/\x\)zz, z G C*, we see, using
class field theory, that p • <p j {A v̂ } is in fact the character r of R*, given by

It is then clearly equivalent to p • <p | {X^w^. Observe that we have in fact proved
the equivalence of p • <p and p • <p under the assumption o ^ wo.

The finiteness of L(l ,p • <p) is now a consequence of the fact that, for every €,
corresponding t is imaginary.
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